SIG Calculary limits Using the Limit Lews.
Key points:
$$\neq 0$$
 (Linear)[Limit Lews] by general condition
 $\# \# @ Limits by excelling zeros: Factoring technique.
 $@ Squeeze Theorem.$
 $@ Limit Lews:
 $\int Limit Lews:$
 $\int Limit Lews:$
 $\int Limit Lews:
 $\int Limit Lews:$
 $\int Limit Lews:$
 $\int Limit Lews:
 $\int Limit Lews:$
 $\int Limit Le$$$$$$$$$$$$$$$$$$$$$

eq2 (Duct plug in)
• Im
$$\frac{x+1}{3x^2+5x+7} = \frac{0+1}{0+7} = \frac{1}{7}$$
; $\lim_{h \to 1} \frac{2h-h^2}{h+1} = \frac{2-1}{1+1} = \frac{1}{2}$; $\lim_{k \to 3} \sqrt{9-k!} = \sqrt{9-(k)} = \sqrt{0} = 0$
***** NO In the quotient fam $\lim_{k \to 0} \frac{4k}{9x^3}$. If both $\lim_{k \to 0} \sqrt{9-k!} = \sqrt{9-(k)} = \sqrt{0} = 0$
***** NO In the quotient fam $\lim_{k \to 0} \frac{4k}{9x^3}$. If both $\lim_{k \to 0} \sqrt{9-k!} = 0$, then we nust concel out
the "zero terms" in fax and give by the following factoring technique.
eq3. (support $\lim_{k \to -2} \frac{x^2 + 2k}{x^2 - 2x}$. Reach if we plug in $x=2$, we get $\frac{2+2-6}{2^2-22} = \frac{0}{2}$, which
 $\lim_{k \to -2} \frac{x^2 + 2k}{x^2 - 2x}$. Reach if we plug in $x=2$, we get $\frac{2+2-6}{2^2-22} = \frac{0}{2}$, which
shear: Freenez $\lim_{k \to -2} \frac{(x+2)\cdot(x+3)}{x^2-2x}$. $\lim_{k \to 0} \frac{1}{x^{-1}} = \frac{1}{2}$, $\lim_{k \to 0} \frac{1}{2} - \frac{1}{2}$.
eq4. If fill= $\frac{1}{x-3}$, then $\lim_{k \to 0} \frac{1}{x-1} = \lim_{k \to 1} \frac{1}{4(x+3)}$. $\lim_{k \to 0} \frac{1}{x-1} = \frac{1}{2}$.
(\$2/60]
shear: $\frac{1}{x-1} = \frac{1}{x-1} = -\frac{4-x+3}{x-1} = \frac{1}{4x+3}$. $\lim_{k \to 0} \frac{1}{x-1} = \frac{1}{2}$.
(\$2/61]
eq5. Compute $\lim_{k \to 0} \frac{x^2}{x^2-3} = -10$. Hent: $x-2 = 1-3$.
(sec.15)
(sec.15)
(sec.15)
(sec.15)
 $\frac{1}{9} - \frac{1}{3}$, $\frac{1}{x+1} = \frac{1}{x+2} = \frac{1}{x-2} = \frac{1}{x-3} = \frac{1}{x}$.
(\$2/62] For what value of C does $\lim_{k \to 0} \frac{x^2+2}{x-2}$, exist and is finite?
Solution: Notice if we plug in $x=2$, we have $\frac{4C+4}{2-2}$, where de denominator is 0.
So we need the numerator disc be zero, i.e., $4C+4=0 \Rightarrow \sqrt{2}(2-1)$.
Actually, if $C=-1$, $\lim_{k \to 0} \frac{(-1)x+4}{x-2} = \lim_{k \to 0} \frac{(2+x)/2x}{x-2}$.
 $\frac{1}{x-2} = \frac{-4}{x}$.

~ •

(

Linel: Reprovin S based on the given
$$\Sigma$$
.
Linear function for:
eq. (numerically). For for=2X+1, L=-3, a=2, $\Sigma = ac5$, find the largest value
of S in the S-S definition of a limit which ensures that $1-far)-L|<\Sigma$.
solution: Hug in f, L, Σ and number the inequality in $|X-a| form.
 $|(2X+1)-(-3)||2X+4||X+2|<\frac{ac5}{2}=ac25$.
In other words, if $|X-(-2)|=|X+2|<[ac25]$ then $|(2X+1)-(-3)|.
Theofore, $[S=ac25]$.
eq.2. Let $f(x)=|-2X|$ and $\Sigma>0$. What is the largest value of S such that.
 $|S+b|=|x-2| implies $|f(x)+3|<\Sigma$.
Solution: $|f(b)+3| = |1-2X+3| < \mathbb{P}\Sigma$ <=> $|4-2X|<\Sigma$.
(Move that \mathbb{Q} $|g(x)|=|-g(x)|$ for any $g(x)$.) $(=>|2X-4|<\Sigma$.
Theofore, $S=\frac{\Sigma}{2}$.
Hores for WW.
eq.3. Find S as above for $f(x)=\sqrt{10-X}$, $L=3$, $\mathbb{P}a=1$, $\Sigma=1$.
(W2)
solution: Solve for X in $|\sqrt{10-X}-3|<|\ll|-|\sqrt{10-X}-3|<|\ll|2<|\sqrt{10-X}<2$
the solution of $||S|=-b<-X<6$ $||S|=2<\sqrt{10-X}<2$
Theofore is a solute of $||S|=-b<-X<6$ $||S|=2<\sqrt{10-X}<2$
the pick the smaller distorted from the endpoints to $a=1$ $||S|=1$
i.e. $[S=5]$, since we need $||X-1|<5$ to ensure that $b$$$$

whet: Complete the square with the formula: $X^2 - 2a \cdot X + a^2 = (X - a)^2$ Notice that $|(X - a)^2| < \varepsilon$ implies that $|X - a| < \sqrt{\varepsilon}$.